论文标题

大规模CTR预测的增量学习框架

An Incremental Learning framework for Large-scale CTR Prediction

论文作者

Katsileros, Petros, Mandilaras, Nikiforos, Mallis, Dimitrios, Pitsikalis, Vassilis, Theodorakis, Stavros, Chamiel, Gil

论文摘要

在这项工作中,我们为点击率(CTR)预测引入了一个增量学习框架,并证明了其对Taboola庞大的建议服务的有效性。我们的方法通过从先前部署的模型中进行热门启动并仅对“新鲜”数据进行微调,可以快速捕获新兴趋势。过去的知识是通过教师范式维护的,教师充当蒸馏技术,减轻灾难性的遗忘现象。我们的增量学习框架可以显着更快地训练和部署周期(X12加速)。我们证明,每毫米(RPM)在多个交通段中的收入一致,而新引入的物品的CTR大幅增加。

In this work we introduce an incremental learning framework for Click-Through-Rate (CTR) prediction and demonstrate its effectiveness for Taboola's massive-scale recommendation service. Our approach enables rapid capture of emerging trends through warm-starting from previously deployed models and fine tuning on "fresh" data only. Past knowledge is maintained via a teacher-student paradigm, where the teacher acts as a distillation technique, mitigating the catastrophic forgetting phenomenon. Our incremental learning framework enables significantly faster training and deployment cycles (x12 speedup). We demonstrate a consistent Revenue Per Mille (RPM) lift over multiple traffic segments and a significant CTR increase on newly introduced items.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源