论文标题
SIMCURL:简单的对比用户表示从命令序列学习
SimCURL: Simple Contrastive User Representation Learning from Command Sequences
论文作者
论文摘要
用户建模对于理解用户行为至关重要,对于改善用户体验和个性化建议至关重要。当用户与软件交互时,通过记录和分析系统生成大量命令序列。这些命令序列包含用户目标和意图的线索。但是,这些数据模式是高度非结构化和未标记的,因此标准预测系统很难学习。我们提出了SimCurl,这是一个简单而有效的对比自我监督的深度学习框架,从未标记的命令序列中学习用户表示。我们的方法介绍了用户会议网络体系结构,以及会话辍学作为一种新颖的数据增强方式。我们在超过十亿命令的现实世界命令序列数据集上训练和评估我们的方法。当将学习的表示形式转移到经验和专业知识分类等下游任务时,我们的方法对现有方法显示了显着改善。
User modeling is crucial to understanding user behavior and essential for improving user experience and personalized recommendations. When users interact with software, vast amounts of command sequences are generated through logging and analytics systems. These command sequences contain clues to the users' goals and intents. However, these data modalities are highly unstructured and unlabeled, making it difficult for standard predictive systems to learn from. We propose SimCURL, a simple yet effective contrastive self-supervised deep learning framework that learns user representation from unlabeled command sequences. Our method introduces a user-session network architecture, as well as session dropout as a novel way of data augmentation. We train and evaluate our method on a real-world command sequence dataset of more than half a billion commands. Our method shows significant improvement over existing methods when the learned representation is transferred to downstream tasks such as experience and expertise classification.