论文标题

原始图像爆发的高动态范围和超分辨率

High Dynamic Range and Super-Resolution from Raw Image Bursts

论文作者

Lecouat, Bruno, Eboli, Thomas, Ponce, Jean, Mairal, Julien

论文摘要

由智能手机和中端相机捕获的照片的空间分辨率和动态范围有限,在饱和区域中未充满刺激的区域和颜色伪像的噪声响应。本文介绍了第一种方法(据我们所知),以重建高分辨率,高动态范围的颜色图像,这些彩色图像是由带有曝光括号内的手持式摄像机捕获的原始照相爆发的。该方法使用图像形成的物理精确模型结合了一种迭代优化算法,用于解决相应的逆问题和学习的图像表示,以进行健壮的比对,并在先验的情况下进行自然图像。所提出的算法很快,与最新的基于学习的图像恢复方法相比,内存需求较低,并且从合成但逼真的数据终止学习的特征。广泛的实验证明了其出色的性能,具有最多$ \ times 4 $的超分辨率因子在野外拍摄的带有手持式相机的真实照片,以及对低光条件,噪音,摄像机摇动和中等物体运动的高鲁棒性。

Photographs captured by smartphones and mid-range cameras have limited spatial resolution and dynamic range, with noisy response in underexposed regions and color artefacts in saturated areas. This paper introduces the first approach (to the best of our knowledge) to the reconstruction of high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing. This method uses a physically-accurate model of image formation to combine an iterative optimization algorithm for solving the corresponding inverse problem with a learned image representation for robust alignment and a learned natural image prior. The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration, and features that are learned end to end from synthetic yet realistic data. Extensive experiments demonstrate its excellent performance with super-resolution factors of up to $\times 4$ on real photographs taken in the wild with hand-held cameras, and high robustness to low-light conditions, noise, camera shake, and moderate object motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源