论文标题
关于相对论重力对潮汐破坏事件速度的影响
On the impact of relativistic gravity on the rate of tidal disruption events
论文作者
论文摘要
超级质量黑洞(SMBHS)探针相对论重力对恒星的潮汐破坏。在未来十年中,观察到的潮汐破坏事件(TDE)的数量将通过几个数量级增长,从而允许对SMBH和恒星种群的性质的统计推断。在这里,我们分析了在Schwarzschild几何形状中遇到SMBH的星星距离的概率分布函数,其中结果完全分析和KERR度量。从此分析中,我们计算可观察到的TDE的数量,定义为潮汐半径$ r _ {\ rm t} $中但直接捕获半径(通常,大于地平线半径大)的数量。我们发现,相对论的影响导致具有周围距离的恒星数量急剧下降,$ r _ {\ rm p} \ Lessim 10 \,r _ {\ rm g} $,其中$ r _ {\ rm g} = gm g} = gm/c/c^2 $,以及最大的smbhs $ nmbs $ atmms $ atmm。距离为$ f _ {\ rm r _ {\ rm p}}} \ propto r _ {\ rm p}^{4/3} $,或以$β\ equiv rm _ {\ equiv rm _ {\ equiv rm t}/rm t}/rm p} $ p} $ f _ prop ap prop ap prop ap prop ap prop {我们发现自旋对TDE的分数几乎没有影响,直到非常高的质量末端为止,在没有相对论效应的情况下,速率并不为零($ \ \ lyssim 1 \%\%\%的预期率)。有效地独立于自旋,如果TDE的祖细胞反映了主要低质量恒星种群,因此具有质量$ \ lyseSim 1M _ {\ odot} $,我们预计TDE的TDE速率高于$ 10^{7} M _ {\ odot} $。
The tidal disruption of stars by supermassive black holes (SMBHs) probes relativistic gravity. In the coming decade, the number of observed tidal disruption events (TDEs) will grow by several orders of magnitude, allowing statistical inferences of the properties of the SMBH and stellar populations. Here we analyse the probability distribution functions of the pericentre distances of stars that encounter an SMBH in the Schwarzschild geometry, where the results are completely analytic, and the Kerr metric. From this analysis we calculate the number of observable TDEs, defined to be those that come within the tidal radius $r_{\rm t}$ but outside the direct capture radius (which is, in general, larger than the horizon radius). We find that relativistic effects result in a steep decline in the number of stars that have pericenter distances $r_{\rm p} \lesssim 10\,r_{\rm g}$, where $r_{\rm g} = GM/c^2$, and that for maximally spinning SMBHs the distribution function of $r_{\rm p}$ at such distances scales as $f_{\rm r_{\rm p}}\propto r_{\rm p}^{4/3}$, or in terms of $β\equiv r_{\rm t}/r_{\rm p}$ scales as $f_β \propto β^{-10/3}$. We find that spin has little effect on the TDE fraction until the very high-mass end, where instead of being identically zero the rate is small ($\lesssim 1\%$ of the expected rate in the absence of relativistic effects). Effectively independent of spin, if the progenitors of TDEs reflect the predominantly low-mass stellar population and thus have masses $\lesssim 1M_{\odot}$, we expect a substantial reduction in the rate of TDEs above $10^{7}M_{\odot}$.