论文标题

使用测量数据评估基于高斯混合模型的通道估计器

Evaluation of a Gaussian Mixture Model-based Channel Estimator using Measurement Data

论文作者

Turan, Nurettin, Fesl, Benedikt, Grundei, Moritz, Koller, Michael, Utschick, Wolfgang

论文摘要

在这项工作中,我们使用现实世界数据来评估和验证用于物理层功能的基于机器学习(ML)的算法。具体而言,我们应用了最近引入的基于高斯混合模型(GMM)的算法,以估计来自测量活动的上行链路通道。对于此估计器,有一个初始(离线)训练阶段,其中将GMM安装在给定的通道(训练)数据上。此后,拟合的GMM用于(在线)频道估计。我们的实验表明,GMM估计器了解给定基站整个无线电传播环境的内在特征。本质上,由于最初拟合的GMM的通用近似属性,可捕获此环境信息。对于足够数量的GMM组件,显示GMM估计器可近似(未知)平方误差(MSE) - 最佳通道估计器任意良好。在我们的实验中,与无法捕获环境信息的方法相比,GMM估计器显示出显着的性能增长。为了验证那些学习环境信息的说法,我们使用最先进的通道模拟器生成综合通道数据,然后在这些信息上进行一次训练GMM估计器,然后在真实数据上一次训练GMM估计器,然后将估算器应用于合成过程,然后将其应用于真实数据。然后,我们观察到在训练阶段提供合适的环境信息如何有利地影响后来的渠道估计性能。

In this work, we use real-world data in order to evaluate and validate a machine learning (ML)-based algorithm for physical layer functionalities. Specifically, we apply a recently introduced Gaussian mixture model (GMM)-based algorithm in order to estimate uplink channels stemming from a measurement campaign. For this estimator, there is an initial (offline) training phase, where a GMM is fitted onto given channel (training) data. Thereafter, the fitted GMM is used for (online) channel estimation. Our experiments suggest that the GMM estimator learns the intrinsic characteristics of a given base station's whole radio propagation environment. Essentially, this ambient information is captured due to universal approximation properties of the initially fitted GMM. For a large enough number of GMM components, the GMM estimator was shown to approximate the (unknown) mean squared error (MSE)-optimal channel estimator arbitrarily well. In our experiments, the GMM estimator shows significant performance gains compared to approaches that are not able to capture the ambient information. To validate the claim that ambient information is learnt, we generate synthetic channel data using a state-of-the-art channel simulator and train the GMM estimator once on these and once on the real data, and we apply the estimator once to the synthetic and once to the real data. We then observe how providing suitable ambient information in the training phase beneficially impacts the later channel estimation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源