论文标题

系数猜想的基本反例

An elementary counterexample to a coefficient conjecture

论文作者

Li, Liulan, Ponnusamy, Saminathan, Wirths, Karl-Joachim

论文摘要

在本文中,我们考虑了函数家族$ f $ meromorthic在单位磁盘$ \ id = \ {z:\,| z | | <1 \} $在点$ z = p $,taylor扩展\ [f(z)= z+\ sum_ {k = 2}^{\ infty} a_kz^k,\ quad | z | <p,\]并满足条件\ [\ [\ [\左) | \ left(\ frac {z} {f(z)} \ right)-z \ left(\ frac {z} {z} {f(z)} \ right)' - 1 \ right |<λ,\,\,\,\ forall z \ in \ in \ id,\ in \ id,\ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ rive。我们用$ \ Mathcal {U} _M(λ)$表示此类,我们将证明该类函数的表示定理。结果,我们获得了$ | a_2 | $的估计值的简单证明,并获得了$ f \ in \ Mathcal {u} _m(λ)$的laurent系列的初始系数的不等式。在\ cite {pw2}中,有人指出,对于$ f \ in \ mathcal {u} _m(λ)$不等式\ [| a _n | \,\ leq \ \ leq \,\ frac {1} \ Quad N \ GEQ 2 \]有效。我们为案例$ n = 3 $的猜想提供了反例。

In this article, we consider the family of functions $f$ meromorphic in the unit disk $\ID=\{z :\,|z| < 1\}$ with a pole at the point $z=p$, a Taylor expansion \[f(z)= z+\sum_{k=2}^{\infty} a_kz^k, \quad |z|<p, \] and satisfying the condition \[\left |\left(\frac{z}{f(z)}\right)-z\left(\frac{z}{f(z)}\right)'-1\right |<λ,\, \forall z\in\ID, \] for some $λ$, $0<λ< 1$. We denote this class by $\mathcal{U}_m(λ)$ and we shall prove a representation theorem for the functions in this class. As consequences, we get a simple proof for the estimates of $|a_2|$ and obtain inequalities for the initial coefficients of the Laurent series of $f\in \mathcal{U}_m(λ)$ at its pole. In \cite{PW2} it had been conjectured that for $f\in \mathcal{U}_m(λ)$ the inequalities \[|a_n|\,\leq\,\frac{1}{p^{n-1}}\sum_{k=0}^{n-1}(λp^2)^k, \quad n\geq 2 \] are valid. We provide a counterexample to this conjecture for the case $n=3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源