论文标题

铅笔网:自动无人机赛车中稳健门的零射模拟到现实转移学习

PencilNet: Zero-Shot Sim-to-Real Transfer Learning for Robust Gate Perception in Autonomous Drone Racing

论文作者

Pham, Huy Xuan, Sarabakha, Andriy, Odnoshyvkin, Mykola, Kayacan, Erdal

论文摘要

在自主和移动机器人技术中,主要挑战之一是对环境的稳健感知,通常是未知和动态的,例如自主无人机赛车。在这项工作中,我们提出了一种新型的基于神经网络的感知方法,用于赛车门检测 - 铅笔网 - 依赖于铅笔滤波器顶部的轻质神经网络骨架。这种方法统一了对单个姿势元组中门的2D位置,距离和方向的预测。我们表明,我们的方法对于不需要任何现实世界训练样本的零射击SIM到运行转移学习有效。此外,与最先进的方法相比,在快速飞行下通常看到的照明变化非常强大。一组彻底的实验证明了这种方法在多种挑战的情况下的有效性,在多种挑战性的情况下,无人机在不同的照明条件下完成了各种轨道。

In autonomous and mobile robotics, one of the main challenges is the robust on-the-fly perception of the environment, which is often unknown and dynamic, like in autonomous drone racing. In this work, we propose a novel deep neural network-based perception method for racing gate detection -- PencilNet -- which relies on a lightweight neural network backbone on top of a pencil filter. This approach unifies predictions of the gates' 2D position, distance, and orientation in a single pose tuple. We show that our method is effective for zero-shot sim-to-real transfer learning that does not need any real-world training samples. Moreover, our framework is highly robust to illumination changes commonly seen under rapid flight compared to state-of-art methods. A thorough set of experiments demonstrates the effectiveness of this approach in multiple challenging scenarios, where the drone completes various tracks under different lighting conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源