论文标题
朝向大型小物体检测:调查和基准测试
Towards Large-Scale Small Object Detection: Survey and Benchmarks
论文作者
论文摘要
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,由于视觉外观不佳和由小目标的内在结构造成的,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况(SOD),这是计算机视觉中臭名昭著的任务之一。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24828个高质量的交通图像和278433九类实例。对于Soda-A,我们收集2513个高分辨率航空图像,并在九个类别上注释872069实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并在该领域产生更多突破。数据集和代码可在:\ url {https://shaunyuan22.github.io/soda}中获得。
With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes are available at: \url{https://shaunyuan22.github.io/SODA}.