论文标题
谐波电位内的温度和摩擦波动
Temperature and friction fluctuations inside a harmonic potential
论文作者
论文摘要
在本文中,我们研究了一个谐波电位内发生扩散率波动的分子的捕获运动。对于相同的扩散扩散过程,我们研究了两个可能的解释。取决于扩散率波动是否被解释为温度或摩擦波动,我们表明它们在谐波电位内显示出巨大不同的统计特性。我们在两种类型的解释下计算过程的特征功能,并分析其极限行为。基于过程的积分表示,我们计算均方位移和归一化的过量峰度。在长期限制中,我们显示摩擦波动表明概率密度函数(PDF)始终会收敛到高斯,而在温度波动的情况下,固定PDF可以根据扩散率和位置相关时间之间的比率显示高斯分布或广义分布或广义分布(Bessel)。
In this article we study the trapped motion of a molecule undergoing diffusivity fluctuations inside a harmonic potential. For the same diffusing-diffusivity process, we investigate two possible interpretations. Depending on whether diffusivity fluctuations are interpreted as temperature or friction fluctuations, we show that they display drastically different statistical properties inside the harmonic potential. We compute the characteristic function of the process under both types of interpretations and analyse their limit behavior. Based on the integral representations of the processes we compute the mean-squared displacement and the normalized excess kurtosis. In the long-time limit, we show for friction fluctuations that the probability density function (PDF) always converges to a Gaussian whereas in the case of temperature fluctuations the stationary PDF can display either Gaussian distribution or generalized Laplace (Bessel) distribution depending on the ratio between diffusivity and positional correlation times.