论文标题

使用车道标记的强大自我调整数据协会用于地理参考

Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings

论文作者

Muñoz-Bañón, Miguel Ángel, Pauls, Jan-Hendrik, Hu, Haohao, Stiller, Christoph, Candelas, Francisco A., Torres, Fernando

论文摘要

基于航空图像的地图中的本地化提供了许多优势,例如全球一致性,地理参考地图以及公开访问数据的可用性。但是,可以从空中图像和板载传感器上观察到的地标是有限的。这导致数据关联期间的歧义或混叠。 本文以高度信息代表的形式(允许有效的数据关联),为解决这些歧义提供了完整的管道。它的核心是强大的自我调整数据关联,可根据测量的熵调整搜索区域。此外,为了平滑最终结果,我们将相关数据的信息矩阵调整为数据关联过程产生的相对变换的函数。 我们评估了来自德国卡尔斯鲁厄市附近城市和农村场景的真实数据的方法。我们将最新的异常缓解方法与我们的自我调整方法进行了比较,这表明了相当大的改进,尤其是对于外部城市场景。

Localization in aerial imagery-based maps offers many advantages, such as global consistency, geo-referenced maps, and the availability of publicly accessible data. However, the landmarks that can be observed from both aerial imagery and on-board sensors is limited. This leads to ambiguities or aliasing during the data association. Building upon a highly informative representation (that allows efficient data association), this paper presents a complete pipeline for resolving these ambiguities. Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements. Additionally, to smooth the final result, we adjust the information matrix for the associated data as a function of the relative transform produced by the data association process. We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany. We compare state-of-the-art outlier mitigation methods with our self-tuning approach, demonstrating a considerable improvement, especially for outer-urban scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源