论文标题
通过上下文感知的跨层融合来检测伪装的对象检测
Camouflaged Object Detection via Context-aware Cross-level Fusion
论文作者
论文摘要
伪装的对象检测(COD)旨在识别自然场景中隐藏自己的物体。准确的COD遭受了许多与低边界对比度有关的挑战,以及对象外观的较大变化,例如对象大小和形状。为了应对这些挑战,我们提出了一种新颖的背景感知跨层次融合网络(C2F-net),该网络融合了上下文感知的跨级特征,以准确识别伪装的对象。具体而言,我们通过注意力引起的跨层次融合模块(ACFM)来计算来自多级特征的内容丰富的注意力系数,该模块(ACFM)进一步在注意力系数的指导下进一步整合了这些特征。然后,我们提出了一个双分支全局上下文模块(DGCM),以通过利用丰富的全球上下文信息来完善内容丰富的功能表示的融合功能。多个ACFM和DGCM以级联的方式集成,以产生高级特征的粗略预测。粗糙的预测充当了注意力图,可以在将它们传递到我们的伪装推理模块(CIM)之前先改善低级特征以生成最终预测。我们对三个广泛使用的基准数据集进行了广泛的实验,并将C2F-NET与最新模型(SOTA)模型进行比较。结果表明,C2F-NET是一种有效的COD模型,并且胜过SOTA模型。此外,对息肉细分数据集的评估证明了我们在COD下游应用程序中C2F-NET的有希望的潜力。我们的代码可在以下网址公开获取:https://github.com/ben57882/c2fnet-tscvt。
Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network (C2F-Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare C2F-Net with state-of-the-art (SOTA) models. The results show that C2F-Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our C2F-Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT.