论文标题
XADLIME:可解释的阿尔茨海默氏病通过临床引导的原型学习估算的可能性图估计
XADLiME: eXplainable Alzheimer's Disease Likelihood Map Estimation via Clinically-guided Prototype Learning
论文作者
论文摘要
诊断阿尔茨海默氏病(AD)涉及由于其先天性的不可逆性特征而伴随着微妙而逐渐发展的原因。这些特征使AD生物标志物从结构性脑成像(例如结构MRI)扫描非常具有挑战性。此外,很有可能与正常衰老纠缠在一起。我们通过使用临床引导的原型学习,通过可解释的AD可能性图估计(XADLIME)提出了一种新型的深度学习方法,用于在3D SMRI上进行AD进程模型。具体而言,我们在潜在临床特征的簇上建立了一组拓扑感知的原型,从而发现了AD光谱歧管。然后,我们测量潜在的临床特征和完善的原型之间的相似性,估计了“伪”可能性图。通过将此伪图视为丰富的参考,我们使用估计网络在3D SMRI扫描上估算AD可能性图。此外,我们通过从两个角度揭示了可理解的概述:临床和形态学,促进了这种可能性图的解释性。在推断期间,这张估计的似然图是对看不见的SMRI扫描的替代品,用于有效执行下游任务,同时提供彻底的可解释状态。
Diagnosing Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irreversibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Furthermore, there is a high possibility of getting entangled with normal aging. We propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs using clinically-guided prototype learning. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. We then measure the similarities between latent clinical features and well-established prototypes, estimating a "pseudo" likelihood map. By considering this pseudo map as an enriched reference, we employ an estimating network to estimate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensible overview from two perspectives: clinical and morphological. During the inference, this estimated likelihood map served as a substitute over unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states.