论文标题

在不匹配的先验下,基于模型的基于模型的体系结构

Deep Model-Based Architectures for Inverse Problems under Mismatched Priors

论文作者

Shoushtari, Shirin, Liu, Jiaming, Hu, Yuyang, Kamilov, Ulugbek S.

论文摘要

通过结合使用卷积神经网(CNN)指定的物理测量模型和学到的图像验证者,对基于模型的深层架构(DMBA)的兴趣越来越大。例如,用于系统设计DMBA的著名框架包括插件培训(PNP),深度展开(DU)和深度平衡模型(DEQ)。尽管已广泛研究了DMBA的经验性能和理论特性,但当确切地知道所需的图像之前,该地区的现有工作主要集中在其性能上。这项工作通过在不匹配的CNN先验下向DMBA提供新的理论和数值见解来解决先前工作的差距。当训练数据和测试数据之间存在分布变化时,自然会出现不匹配的先验,因为测试图像来自与用于训练CNN先验的图像不同的分布。当CNN事先用于推理是一些所需的统计估计器(MAP或MMSE)的近似值时,它们也会出现。我们的理论分析在一组清晰指定的假设下,由于不匹配的CNN先验,在解决方案上提供了明显的误差界限。我们的数值结果比较了在现实分布变化和近似统计估计器下DMBA的经验性能。

There is a growing interest in deep model-based architectures (DMBAs) for solving imaging inverse problems by combining physical measurement models and learned image priors specified using convolutional neural nets (CNNs). For example, well-known frameworks for systematically designing DMBAs include plug-and-play priors (PnP), deep unfolding (DU), and deep equilibrium models (DEQ). While the empirical performance and theoretical properties of DMBAs have been widely investigated, the existing work in the area has primarily focused on their performance when the desired image prior is known exactly. This work addresses the gap in the prior work by providing new theoretical and numerical insights into DMBAs under mismatched CNN priors. Mismatched priors arise naturally when there is a distribution shift between training and testing data, for example, due to test images being from a different distribution than images used for training the CNN prior. They also arise when the CNN prior used for inference is an approximation of some desired statistical estimator (MAP or MMSE). Our theoretical analysis provides explicit error bounds on the solution due to the mismatched CNN priors under a set of clearly specified assumptions. Our numerical results compare the empirical performance of DMBAs under realistic distribution shifts and approximate statistical estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源