论文标题
Superdiffusive量子步行背后的噪声相关性
Noise correlations behind superdiffusive quantum walks
论文作者
论文摘要
我们研究离散时间量子行动如何在短距离相关噪声下行为。通过将噪声视为量子门不均匀性的来源,我们在不相关的随机噪声假设中引入了原始的弛豫:在随机分布中表现出的二进制对相关性。考虑到不同的量子门,我们检查了空间和时间噪声状态的运输特性。对于空间不均匀性,我们显示出噪声相关性,从众所周知的指数局部条件到超级延伸。这种情况表现出令人兴奋的表现,其中超级开发指数几乎是不均匀程度的不变性。时间 - 反应状态和有限尺寸的缩放还公布了经历时间噪声相关性的量子步行的出现的超级散发行为,以取代噪声是随机且不相关时所表现出的扩散状态。但是,结果报告了一些量子门对相关性不敏感,与空间噪声方案形成鲜明对比。结果和随后的讨论有助于我们了解超级量子步行的潜在机制,包括那些具有确定性的性质不均匀性的量子。
We study how discrete-time quantum walks behave under short-range correlated noise. By considering noise as a source of inhomogeneity of quantum gates, we introduce a primitive relaxation in the uncorrelated stochastic noise assumption: binary pair correlations manifesting in the random distribution. Considering different quantum gates, we examined the transport properties for both spatial and temporal noise regimes. For spatial inhomogeneities, we show noise correlations driving quantum walks from the well-known exponentially localized condition to superdiffusive spreading. This scenario displays an exciting performance in which the superdiffusive exponent is almost invariant to the inhomogeneity degree. The time-asymptotic regime and the finite-size scaling also unveil an emergent superdiffusive behavior for quantum walks undergoing temporal noise correlation, replacing the diffusive regime exhibited when noise is random and uncorrelated. However, results report some quantum gates insensitive to correlations, contrasting with the spatial noise scenario. Results and following discussions help us understand the underlying mechanism of superdiffusive quantum walks, including those with deterministic aperiodic inhomogeneities.