论文标题
二进制不混溶的玻色网凝结物中的涡旋溶液
Vortex Solutions in a Binary Immiscible Bose-Einstein Condensate
论文作者
论文摘要
我们将平均场涡流溶液及其在不混溶极限的两个组分玻色爱因斯坦冷凝物中的稳定性。采用了一种差异方法来研究由多数组件组成的系统,该系统包含一个量化涡流的单个定量涡流和填充涡流核心的少数族裔组成部分。我们表明,通过将变化溶液与耦合Gross-Pitaevskii方程的完整数值溶液进行比较,超级高斯函数与两组分量范围的两个组分涡流溶液相吻合。随后,我们通过扰动从涡流核心的中心扰动涡旋溶液的稳定性,从而证明了它们对小扰动的稳定性。
We consider the mean-field vortex solutions and their stability within a two-component Bose Einstein condensate in the immiscible limit. A variational approach is employed to study a system consisting of a majority component which contains a single quantised vortex and a minority component which fills the vortex core. We show that a super-Gaussian function is a good approximation to the two-component vortex solution for a range of atom numbers of the in-filling component, by comparing the variational solutions to the full numerical solutions of the coupled Gross-Pitaevskii equations. We subsequently examine the stability of the vortex solutions by perturbing the in-filling component away from the centre of the vortex core, thereby demonstrating their stability to small perturbations.