论文标题
达到公平意识的多目标优化
Towards Fairness-Aware Multi-Objective Optimization
论文作者
论文摘要
近年来,在各种应用中,在减轻决策中的不公平或歧视方面,公平感知机器学习的迅速发展。但是,对公平感知到的多目标优化的关注要少得多,这确实是在现实生活中通常看到的,例如公平资源分配问题和数据驱动的多目标优化问题。本文旨在从公平的角度阐明和扩大我们对多目标优化的理解。为此,我们首先讨论多目标优化中的用户偏好,然后探索其与机器学习和多目标优化的公平关系。在上述讨论之后,提出了公平感知的多目标优化的代表性案例,进一步阐述了公平性在传统的多目标优化,数据驱动的优化和联合优化的重要性。最后,解决了公平意识的多目标优化方面的挑战和机遇。我们希望本文在优化的背景下朝着理解公平迈出了一步,并促进了对公平意识的多目标优化的兴趣。
Recent years have seen the rapid development of fairness-aware machine learning in mitigating unfairness or discrimination in decision-making in a wide range of applications. However, much less attention has been paid to the fairness-aware multi-objective optimization, which is indeed commonly seen in real life, such as fair resource allocation problems and data driven multi-objective optimization problems. This paper aims to illuminate and broaden our understanding of multi-objective optimization from the perspective of fairness. To this end, we start with a discussion of user preferences in multi-objective optimization and then explore its relationship to fairness in machine learning and multi-objective optimization. Following the above discussions, representative cases of fairness-aware multiobjective optimization are presented, further elaborating the importance of fairness in traditional multi-objective optimization, data-driven optimization and federated optimization. Finally, challenges and opportunities in fairness-aware multi-objective optimization are addressed. We hope that this article makes a small step forward towards understanding fairness in the context of optimization and promote research interest in fairness-aware multi-objective optimization.