论文标题
结合半监督腹部器官分割的自我训练和混合体系结构
Combining Self-Training and Hybrid Architecture for Semi-supervised Abdominal Organ Segmentation
论文作者
论文摘要
腹部器官分割具有许多重要的临床应用,例如器官定量,手术计划和疾病诊断。但是,从CT扫描中手动注释器官是耗时且劳动密集型的。半监督的学习表明,通过从大量未标记的图像和有限的标签样本中学习来减轻这一挑战的潜力。在这项工作中,我们遵循自我训练策略,并采用由CNN和SWIN Transformer组成的高性能混合体系结构(PHTRAN),以生成用于未标记数据的精确伪标签。之后,我们将标记的数据一起介绍给具有轻量级PHTRAN的两阶段分割框架,以提高模型的性能和概括能力,同时保持效率。 Flare2022验证集的实验表明,我们的方法可实现出色的分割性能以及快速和低资源模型的推断。平均DSC和NSD分别为0.8956和0.9316。在我们的开发环境下,平均推理时间为18.62 s,平均最大GPU存储器为1995.04 MB,GPU内存时间曲线和CPU利用时间曲线下的平均面积为23196.84和319.67。该代码可在https://github.com/lseventeen/flare22-twostagephtrans上找到。
Abdominal organ segmentation has many important clinical applications, such as organ quantification, surgical planning, and disease diagnosis. However, manually annotating organs from CT scans is time-consuming and labor-intensive. Semi-supervised learning has shown the potential to alleviate this challenge by learning from a large set of unlabeled images and limited labeled samples. In this work, we follow the self-training strategy and employ a high-performance hybrid architecture (PHTrans) consisting of CNN and Swin Transformer for the teacher model to generate precise pseudo labels for unlabeled data. Afterward, we introduce them with labeled data together into a two-stage segmentation framework with lightweight PHTrans for training to improve the performance and generalization ability of the model while remaining efficient. Experiments on the validation set of FLARE2022 demonstrate that our method achieves excellent segmentation performance as well as fast and low-resource model inference. The average DSC and NSD are 0.8956 and 0.9316, respectively. Under our development environments, the average inference time is 18.62 s, the average maximum GPU memory is 1995.04 MB, and the area under the GPU memory-time curve and the average area under the CPU utilization-time curve are 23196.84 and 319.67. The code is available at https://github.com/lseventeen/FLARE22-TwoStagePHTrans.