论文标题

计算符合HMER时:用于手写数学表达式识别的计数网络

When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition

论文作者

Li, Bohan, Yuan, Ye, Liang, Dingkang, Liu, Xiao, Ji, Zhilong, Bai, Jinfeng, Liu, Wenyu, Bai, Xiang

论文摘要

最近,大多数手写的数学表达识别(HMER)方法采用编码器 - 编码器网络,该网络可以直接从具有注意机制的公式图像中预测标记序列。但是,此类方法可能无法准确读取具有复杂结构的公式或生成长的标记序列,因为由于写作样式或空间布局的差异很大,注意结果通常是不准确的。为了减轻此问题,我们为HMER提出了一个非常规的网络,该网络命名为Counting-Inave-Aware-Aware-Aware-Intake-Aware-Aware-Aware-Aware Awaine Network(CAN),该网络共同优化了两个任务:HMER和符号计数。具体而言,我们设计了一个弱监督的计数模块,该模块可以预测每个符号类的数量而无需符号级位置注释,然后将其插入HMER的典型基于注意力的编码器模型。在基准数据集上进行的实验验证了关节优化和计数结果既有益于纠正编码器模型的预测误差,又可以始终如一地胜过最新方法。特别是,与HMER的编码器模型相比,提出的计数模块引起的额外时间成本是边缘的。源代码可从https://github.com/lbh1024/can获得。

Recently, most handwritten mathematical expression recognition (HMER) methods adopt the encoder-decoder networks, which directly predict the markup sequences from formula images with the attention mechanism. However, such methods may fail to accurately read formulas with complicated structure or generate long markup sequences, as the attention results are often inaccurate due to the large variance of writing styles or spatial layouts. To alleviate this problem, we propose an unconventional network for HMER named Counting-Aware Network (CAN), which jointly optimizes two tasks: HMER and symbol counting. Specifically, we design a weakly-supervised counting module that can predict the number of each symbol class without the symbol-level position annotations, and then plug it into a typical attention-based encoder-decoder model for HMER. Experiments on the benchmark datasets for HMER validate that both joint optimization and counting results are beneficial for correcting the prediction errors of encoder-decoder models, and CAN consistently outperforms the state-of-the-art methods. In particular, compared with an encoder-decoder model for HMER, the extra time cost caused by the proposed counting module is marginal. The source code is available at https://github.com/LBH1024/CAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源