论文标题
单点扩展的表示形式
Moduli of representations of one-point extensions
论文作者
论文摘要
我们研究了通过刚性表示的(半)稳定震颤的(半)稳定表示的模量空间。这类模量空间统一了格拉曼尼亚人的刻度代表和模量空间的子代表,该代表是广义kronecker Quivers的代表。使用同源方法,我们发现了基本几何特性的数值标准和结果,构造了产生半不变的材料,扩展了gel'fand Macpherson的对应关系,并得出了这些模量空间奇异同量的PoinCare多种态度的公式。
We study moduli spaces of (semi-)stable representations of one-point extensions of quivers by rigid representations. This class of moduli spaces unifies Grassmannians of subrepresentations of rigid representations and moduli spaces of representations of generalized Kronecker quivers. With homological methods, we find numerical criteria for non-emptiness and results on basic geometric properties, construct generating semi-invariants, expand the Gel'fand MacPherson correspondence, and derive a formula for the Poincare polynomial in singular cohomology of these moduli spaces.