论文标题

物理信息卷积神经网络,具有双色样条插值,用于音场估算

Physics-informed convolutional neural network with bicubic spline interpolation for sound field estimation

论文作者

Shigemi, Kazuhide, Koyama, Shoichi, Nakamura, Tomohiko, Saruwatari, Hiroshi

论文摘要

提出了一种基于物理信息的卷积神经网络(PICNN)的声场估计方法,并提出了样条插值。大多数声场估计方法基于波函数的扩展,使估计功能满足Helmholtz方程。但是,这些方法仅依赖于物理特性。因此,当测量次数少时,它们的准确性严重恶化。基于神经网络的最新基于学习的方法在可用训练数据时从稀疏测量中估算中具有优势。但是,由于未考虑物理特性,因此估计的功能可能是物理上不可行的解决方案。我们通过使用损失函数来惩罚与Helmholtz方程的偏差,建议将picnn应用于声场估计问题。由于CNN的输出是空间离散的压力分布,因此很难直接评估Helmholtz方程损耗函数。因此,我们将双子样条插值结合在PICNN框架中。实验结果表明,通过提出的方法可以从稀疏测量中进行准确且物理上可行的估计。

A sound field estimation method based on a physics-informed convolutional neural network (PICNN) using spline interpolation is proposed. Most of the sound field estimation methods are based on wavefunction expansion, making the estimated function satisfy the Helmholtz equation. However, these methods rely only on physical properties; thus, they suffer from a significant deterioration of accuracy when the number of measurements is small. Recent learning-based methods based on neural networks have advantages in estimating from sparse measurements when training data are available. However, since physical properties are not taken into consideration, the estimated function can be a physically infeasible solution. We propose the application of PICNN to the sound field estimation problem by using a loss function that penalizes deviation from the Helmholtz equation. Since the output of CNN is a spatially discretized pressure distribution, it is difficult to directly evaluate the Helmholtz-equation loss function. Therefore, we incorporate bicubic spline interpolation in the PICNN framework. Experimental results indicated that accurate and physically feasible estimation from sparse measurements can be achieved with the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源