论文标题

基于补丁的神经渲染

Generalizable Patch-Based Neural Rendering

论文作者

Suhail, Mohammed, Esteves, Carlos, Sigal, Leonid, Makadia, Ameesh

论文摘要

自从神经辐射场(NERF)出现以来,神经渲染引起了极大的关注,并且已经大大推动了新型视图合成的最新作品。最近的重点是在一个场景中过度融合的模型,以及学习模型的一些尝试,这些模型可以综合看不见的场景的新视图,主要包括将深度卷积特征与类似NERF的模型相结合。我们提出了一个不同的范式,不需要深层特征,也不需要类似NERF的体积渲染。我们的方法能够直接从现场采样的贴片集中直接预测目标射线的颜色。我们首先利用表现几何形状沿着每个参考视图的外两极线提取斑块。每个贴片都线性地投影到1D特征向量和一系列变压器处理集合中。对于位置编码,我们像在光场表示中一样对射线进行参数化,并具有至关重要的差异,即坐标是相对于目标射线的规范化的,这使我们的方法与参考框架无关并改善了概括。我们表明,即使接受与先前的工作相比,我们的方法综合新观点的综合,我们的方法在新颖的综合综合方面都比最先进的构成。

Neural rendering has received tremendous attention since the advent of Neural Radiance Fields (NeRF), and has pushed the state-of-the-art on novel-view synthesis considerably. The recent focus has been on models that overfit to a single scene, and the few attempts to learn models that can synthesize novel views of unseen scenes mostly consist of combining deep convolutional features with a NeRF-like model. We propose a different paradigm, where no deep features and no NeRF-like volume rendering are needed. Our method is capable of predicting the color of a target ray in a novel scene directly, just from a collection of patches sampled from the scene. We first leverage epipolar geometry to extract patches along the epipolar lines of each reference view. Each patch is linearly projected into a 1D feature vector and a sequence of transformers process the collection. For positional encoding, we parameterize rays as in a light field representation, with the crucial difference that the coordinates are canonicalized with respect to the target ray, which makes our method independent of the reference frame and improves generalization. We show that our approach outperforms the state-of-the-art on novel view synthesis of unseen scenes even when being trained with considerably less data than prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源