论文标题

适应性移动操纵器投掷的解决方案

A Solution to Adaptive Mobile Manipulator Throwing

论文作者

Liu, Yang, Nayak, Aradhana, Billard, Aude

论文摘要

移动操纵器投掷是一种有前途的方法,可以提高工厂动态操纵的灵活性和效率。它的主要挑战是在广泛的任务规格下有效地计划可行的投掷。我们表明,移动操纵器投掷问题可以简化为平面问题,从而大大降低了计算成本。使用机器学习方法,我们构建了对象的倒飞行动力学和机器人的运动可行性的模型,该模型可以在1 ms之内以1 ms的范围内抛出目标位置的查询。得益于我们方法的计算效率,我们表明该系统正在自适应受到干扰,这是通过即时进行替代解决方案而不是坚持原始投掷计划的。

Mobile manipulator throwing is a promising method to increase the flexibility and efficiency of dynamic manipulation in factories. Its major challenge is to efficiently plan a feasible throw under a wide set of task specifications. We show that the mobile manipulator throwing problem can be simplified to a planar problem, hence greatly reducing the computational costs. Using machine learning approaches, we build a model of the object's inverted flying dynamics and the robot's kinematic feasibility, which enables throwing motion generation within 1 ms for given query of target position. Thanks to the computational efficiency of our method, we show that the system is adaptive under disturbance, via replanning on the fly for alternative solutions, instead of sticking to the original throwing plan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源