论文标题
$ \ mathfrak {gl}(n)$旋转链中的可集成的交叉盖状态
Integrable crosscap states in $\mathfrak{gl}(N)$ spin chains
论文作者
论文摘要
我们研究了可集成的量子旋转链的可集成的横盖状态,并将其分类为$ \ mathfrak {gl}(n)$对称模型。我们还为整合的横盖状态与伯特状态之间的确切重叠提供了派生。派生的第一部分是计算脱壳重叠的总和公式。使用此公式,我们证明多粒子状态的归一化重叠是Gaudin样决定因素的比率。此外,我们收集可能与ADS/CFT对应关系相关的可集成的横盖状态。
We study the integrable crosscap states of the integrable quantum spin chains and we classify them for the $\mathfrak{gl}(N)$ symmetric models. We also give a derivation for the exact overlaps between the integrable crosscap states and the Bethe states. The first part of the derivation is to calculate sum formula for the off-shell overlap. Using this formula we prove that the normalized overlaps of the multi-particle states are ratios of the Gaudin-like determinants. Furthermore we collect the integrable crosscap states which can be relevant in the AdS/CFT correspondence.