论文标题

面孔:带有变压器的尺度感知的盲人脸部修复

FaceFormer: Scale-aware Blind Face Restoration with Transformers

论文作者

Li, Aijin, Li, Gen, Sun, Lei, Wang, Xintao

论文摘要

盲人的恢复通常会遇到各种规模的面孔输入,尤其是在现实世界中。但是,当前的大多数作品都支持特定的规模面,这限制了其在现实情况下的应用能力。在这项工作中,我们提出了一个新颖的尺度感知盲人面部修复框架,名为FaceFormer,该框架将面部特征恢复作为比例感知转换。所提出的面部特征上采样(FFUP)模块基于原始的比例比例探针动态生成UPSMPLING滤波器,这有助于我们的网络适应任意的面部尺度。此外,我们进一步提出了面部特征嵌入(FFE)模块,该模块利用变压器来层次提取面部潜在的多样性和鲁棒性。因此,我们的脸部形式可以恢复富裕性和鲁棒性,这些面孔具有面部成分的现实和对称细节。广泛的实验表明,我们提出的使用合成数据集训练的方法比当前的最新技术更好地推广到天然低质量的图像。

Blind face restoration usually encounters with diverse scale face inputs, especially in the real world. However, most of the current works support specific scale faces, which limits its application ability in real-world scenarios. In this work, we propose a novel scale-aware blind face restoration framework, named FaceFormer, which formulates facial feature restoration as scale-aware transformation. The proposed Facial Feature Up-sampling (FFUP) module dynamically generates upsampling filters based on the original scale-factor priors, which facilitate our network to adapt to arbitrary face scales. Moreover, we further propose the facial feature embedding (FFE) module which leverages transformer to hierarchically extract diversity and robustness of facial latent. Thus, our FaceFormer achieves fidelity and robustness restored faces, which possess realistic and symmetrical details of facial components. Extensive experiments demonstrate that our proposed method trained with synthetic dataset generalizes better to a natural low quality images than current state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源