论文标题

一类随机二元模型的姿势和限制定理

Well posedness and limit theorems for a class of stochastic dyadic models

论文作者

Luo, Dejun, Wang, Danli

论文摘要

我们考虑具有节能噪声的随机无关二元模型。结果表明,模型承认法律上独特的弱解决方案。在噪声的一定缩放限制下,随机模型薄弱地收敛到确定性粘性二元模型,我们根据噪声参数提供明确的收敛速率。还建立了基础定理的中心限制定理。如果随机二元模型是粘性的,我们显示了适当选择的噪声的耗散增强现象。

We consider stochastic inviscid dyadic models with energy-preserving noise. It is shown that the models admit weak solutions which are unique in law. Under a certain scaling limit of the noise, the stochastic models converge weakly to a deterministic viscous dyadic model, for which we provide explicit convergence rates in terms of the parameters of noise. A central limit theorem underlying such scaling limit is also established. In case that the stochastic dyadic model is viscous, we show the phenomenon of dissipation enhancement for suitably chosen noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源