论文标题

lindelöf散落的空间

First-countable Lindelöf scattered spaces

论文作者

Banakh, Taras, Brian, Will, Ríos-Herrejón, Alejandro

论文摘要

我们研究了一类可容纳的Lindelöf散射空间或“ FLS”空间。虽然每个$ t_3 $ fls空间都是$ \ mathbb Q $的分散子空间的同型,但$ T_2 $ fls的班级却令人惊讶地富裕。我们对这些空间的调查揭示了与$ q $ - 集,卢辛集合及其亲戚的紧密联系,以及红衣主教$ \ mathfrak {b} $和$ \ mathfrak {d} $。关于FLS空间的许多自然问题结果与$ \ Mathsf {ZFC} $无关。 我们证明存在具有散射高度$ω$的无数fl空间。另一方面,当且仅当$ \ mathfrak {b} = \ aleph_1 $时,就存在一个无限散射高度的空间。我们证明了有关FLS空间可能的基础性的一些独立性结果,以及关于哪些序数可能是FLS空间的散射高度。包括几个开放问题。

We study the class of first-countable Lindelöf scattered spaces, or "FLS" spaces. While every $T_3$ FLS space is homeomorphic to a scattered subspace of $\mathbb Q$, the class of $T_2$ FLS spaces turns out to be surprisingly rich. Our investigation of these spaces reveals close ties to $Q$-sets, Lusin sets, and their relatives, and to the cardinals $\mathfrak{b}$ and $\mathfrak{d}$. Many natural questions about FLS spaces turn out to be independent of $\mathsf{ZFC}$. We prove that there exist uncountable FLS spaces with scattered height $ω$. On the other hand, an uncountable FLS space with finite scattered height exists if and only if $\mathfrak{b} = \aleph_1$. We prove some independence results concerning the possible cardinalities of FLS spaces, and concerning what ordinals can be the scattered height of an FLS space. Several open problems are included.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源