论文标题

非Schurian协会计划的花圈产品和投影系统

Wreath products and projective system of non Schurian association schemes

论文作者

Matsumoto, Makoto, Ogawa, Kento

论文摘要

花圈产品是一种从两个关联方案中构建关联方案的方法。我们确定花圈产品的自动形态群体。我们显示了一个已知的结果,即当且仅当两个组件都是Schurian时,花圈产品是Schurian,它产生了非胡克里亚协会计划和非Schurian $ s $ rings的大型家庭。我们还研究了迭代的花圈产品。 Martin和Stinson的内核方案被证明是一类协会方案的迭代花环产品。迭代的花环产品给出了非舒里亚协会方案的投射系统的示例,并具有对原始构想的明确描述。

A wreath product is a method to construct an association scheme from two association schemes. We determine the automorphism group of a wreath product. We show a known result that a wreath product is Schurian if and only if both components are Schurian, which yields large families of non-Schurian association schemes and non-Schurian $S$-rings. We also study iterated wreath products. Kernel schemes by Martin and Stinson are shown to be iterated wreath products of class-one association schemes. The iterated wreath products give examples of projective systems of non-Schurian association schemes, with an explicit description of primitive idempotents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源