论文标题

探索伪造伪造发现的分离内容信息

Exploring Disentangled Content Information for Face Forgery Detection

论文作者

Liang, Jiahao, Shi, Huafeng, Deng, Weihong

论文摘要

基于卷积神经网络的面部伪造检测方法在训练过程中取得了显着的结果,但在测试过程中努力保持可比的性能。我们观察到,检测器比人工制品痕迹更容易专注于内容信息,这表明检测器对数据集的内在偏置敏感,这会导致严重的过度拟合。在这一关键观察中,我们为删除内容信息设计了一个易于嵌入的拆卸框架,并进一步提出了内容一致性约束(C2C)和全球表示对比约束(GRCC),以增强分离特征的独立性。此外,我们巧妙地构建了两个不平衡的数据集来研究内容偏差的影响。广泛的可视化和实验表明,我们的框架不仅可以忽略内容信息的干扰,而且还可以指导探测器挖掘可疑的人工痕迹并实现竞争性能。

Convolutional neural network based face forgery detection methods have achieved remarkable results during training, but struggled to maintain comparable performance during testing. We observe that the detector is prone to focus more on content information than artifact traces, suggesting that the detector is sensitive to the intrinsic bias of the dataset, which leads to severe overfitting. Motivated by this key observation, we design an easily embeddable disentanglement framework for content information removal, and further propose a Content Consistency Constraint (C2C) and a Global Representation Contrastive Constraint (GRCC) to enhance the independence of disentangled features. Furthermore, we cleverly construct two unbalanced datasets to investigate the impact of the content bias. Extensive visualizations and experiments demonstrate that our framework can not only ignore the interference of content information, but also guide the detector to mine suspicious artifact traces and achieve competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源