论文标题

尖锐重启的多样性

Diversity of Sharp Restart

论文作者

Eliazar, Iddo, Reuveni, Shlomi

论文摘要

当应用于感兴趣的随机过程时,重新启动协议会改变过程完成时间的总体统计分布;因此,完成时间的平均值和随机性会改变。重新启动对平均值的明确效果已被充分理解,众所周知:从平均角度来看,确定性重新启动协议(称为Sharp Restart)可以超过任何其他重新启动协议。但是,重新启动对随机性的明确影响知之甚少。本文是二人组的第二本,探讨了尖锐重新启动对随机性的影响:通过第一部分中的玻尔兹曼·吉布斯 - 香农熵分析,并通过本部分进行多样性分析。具体而言,通过多样性来衡量随机性 - 与Renyi熵密切相关的措施 - 本文建立了一组通用标准,这些标准确定:a)恰恰是当尖锐的重新启示协议减少/增加完成时间的多样性时; b)降低/增加完成时间多样性的尖锐便利协议的存在。此外,解决共同行为和随机性的解决,本文断言,并证明了何时敏锐的重新启动对两者具有一致性影响(减少/增加了两者),何时效果是相反的(减少一个同时增加了另一个)。联合多样性结果所需的关于完成时间(原始)统计分布的信息很少,并且非常实用且易于实施。

When applied to a stochastic process of interest, a restart protocol alters the overall statistical distribution of the process' completion time; thus, the completion-time's mean and randomness change. The explicit effect of restart on the mean is well understood, and it is known that: from a mean perspective, deterministic restart protocols -- termed sharp restart -- can out-perform any other restart protocol. However, little is known on the explicit effect of restart on randomness. This paper is the second in a duo exploring the effect of sharp restart on randomness: via a Boltzmann-Gibbs-Shannon entropy analysis in the first part, and via a diversity analysis in this part. Specifically, gauging randomness via diversity -- a measure that is intimately related to the Renyi entropy -- this paper establishes a set of universal criteria that determine: A) precisely when a sharp-restart protocol decreases/increases the diversity of completion times; B) the very existence of sharp-restart protocols that decrease/increase the diversity of completion times. Moreover, addressing jointly mean-behavior and randomness, this paper asserts and demonstrates when sharp restart has an aligned effect on the two (decreasing/increasing both), and when the effect is antithetical (decreasing one while increasing the other). The joint mean-diversity results require remarkably little information regarding the (original) statistical distributions of completion times, and are remarkably practical and easy to implement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源