论文标题
时间效率的恒定空间易于故障量子计算
Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum Computation
论文作者
论文摘要
扩展量子计算机以在经典计算上获得大量加速需要容错。通常,通过为每个逻辑量子使用许多物理量子器,用于易于故障的量子计算的协议要求过多的空间开销。使用低密度平价检查代码的量子类似物的最新协议仅需要一个恒定的空间,而恒定的空间不会随着逻辑Qubit的数量而增长。但是,实现此协议所需的处理时间内的开销会随着计算步骤的数量增长。为了解决这些问题,在这里,我们使用多个小型量子代码的串联而不是单个大尺寸的量子量子低密度奇偶校验检查代码来介绍一种替代空间跨越故障量子计算的替代方法。我们开发了将不同量子锤代码与尺寸增长的技术相连的技术。结果,我们构建了一个低空的协议,以同时实现恒定的空间开销,并且仅同时构建准螺旋体的时间开销。我们的协议是可容忍的,即使解码器具有非恒定运行时,与现有的常数空间跨越协议不同。这种代码串联方法将使在空间上有界限的空间内,但开销却忽略不足。
Scaling up quantum computers to attain substantial speedups over classical computing requires fault tolerance. Conventionally, protocols for fault-tolerant quantum computation demand excessive space overheads by using many physical qubits for each logical qubit. A more recent protocol using quantum analogues of low-density parity-check codes needs only a constant space overhead that does not grow with the number of logical qubits. However, the overhead in the processing time required to implement this protocol grows polynomially with the number of computational steps. To address these problems, here we introduce an alternative approach to constant-space-overhead fault-tolerant quantum computing using a concatenation of multiple small-size quantum codes rather than a single large-size quantum low-density parity-check code. We develop techniques for concatenating different quantum Hamming codes with growing sizes. As a result, we construct a low-overhead protocol to achieve constant space overhead and only quasi-polylogarithmic time overhead simultaneously. Our protocol is fault tolerant even if a decoder has a non-constant runtime, unlike the existing constant-space-overhead protocol. This code concatenation approach will make possible a large class of quantum speedups within feasibly bounded space overhead yet negligibly short time overhead.