论文标题

部分可观测时空混沌系统的无模型预测

Complementary Semi-Deterministic Clusters for Realistic Statistical Channel Models for Positioning

论文作者

Alawieh, Mohammad, Eberlein, Ernst, Jäckel, Stephan, Franke, Norbert, Ghimire, Birendra, Feigl, Tobias, Yammine, George, Mutschler, Christopher

论文摘要

定位受益于捕获几何效应的通道模型,尤其是从第一个到达路径的信号特性以及多个链接传播条件的空间一致性。在现实的部署方案中捕获物理效应的模型对于评估定位方法增强的潜在益处至关重要。基于射线追踪模拟和统计通道模型的通道模型,这些模型是用于评估3GPP系统定位性能的当前最新方法,并不能完全捕获适用于定位的重要方面。因此,我们提出了具有半确定性簇(SDC)的现有统计通道模型的扩展。 SDC允许使用三种类型的簇模拟通道:固定 - ,镜头和随机群集。我们的结果表明,所提出的模型与在实际部署方案中获得的测量值保持一致。因此,我们的频道模型可用于基于机器学习的高级定位解决方案,从而使NLOS和多路径场景中的定位具有厘米水平的精度。

Positioning benefits from channel models that capture geometric effects and, in particular, from the signal properties of the first arriving path and the spatial consistency of the propagation condition of multiple links. The models that capture the physical effects observed in a realistic deployment scenario are essential for assessing the potential benefits of enhancements in positioning methods. Channel models based on ray-tracing simulations and statistical channel models, which are current state-of-the-art methods employed to evaluate performance of positioning in 3GPP systems, do not fully capture important aspects applicable to positioning. Hence, we propose an extension of existing statistical channel models with semi-deterministic clusters (SDCs). SDCs allow channels to be simulated using three types of clusters: fixed-, specular-, and random-clusters. Our results show that the proposed model aligns with measurements obtained in a real deployment scenario. Thus, our channel models can be used to develop advanced positioning solutions based on machine learning, which enable positioning with centimeter level accuracy in NLOS and multipath scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源