论文标题
非线性系统的Carleman线性化及其有限截面近似
Carleman Linearization of Nonlinear Systems and Its Finite-Section Approximations
论文作者
论文摘要
卡尔曼线性化是一种主流方法之一,是将有限维的非线性动力学系统提升为无限维二维线性系统,并有望在更长的时间范围内与常规一阶线性化接近较长的平衡范围内的原始非线性系统的准确近似值。提起系统的有限截面近似已被广泛用于研究原始非线性系统的动力学和控制特性。在这种情况下,某些未取得的问题是确定在什么条件下,随着有限截面顺序(即截断长度)的增加,产生的近似线性系统的轨迹从有限截面方案收敛到原始的非线性系统的轨迹,以及是否可以明确地量化融合的时间间隔。在本文中,我们为有限截面的近似值提供明确的误差界限,并证明收敛性相对于有限截面顺序是指数级的。对于一类非线性系统,可以证明人们可以在整个时间范围内达到指数收敛。我们的结果实际上是合理的,因为我们提出的误差约束估计可以用于计算给定应用的适当截断长度,例如确定用于模型预测性控制和安全验证的模型预测性控制和可及性分析的适当采样期。我们通过几个说明性模拟来验证理论发现。
The Carleman linearization is one of the mainstream approaches to lift a finite-dimensional nonlinear dynamical system into an infinite-dimensional linear system with the promise of providing accurate approximations of the original nonlinear system over larger regions around the equilibrium for longer time horizons with respect to the conventional first-order linearization approach. Finite-section approximations of the lifted system has been widely used to study dynamical and control properties of the original nonlinear system. In this context, some of the outstanding problems are to determine under what conditions, as the finite-section order (i.e., truncation length) increases, the trajectory of the resulting approximate linear system from the finite-section scheme converges to that of the original nonlinear system and whether the time interval over which the convergence happens can be quantified explicitly. In this paper, we provide explicit error bounds for the finite-section approximation and prove that the convergence is indeed exponential with respect to the finite-section order. For a class of nonlinear systems, it is shown that one can achieve exponential convergence over the entire time horizon up to infinity. Our results are practically plausible as our proposed error bound estimates can be used to compute proper truncation lengths for a given application, e.g., determining proper sampling period for model predictive control and reachability analysis for safety verifications. We validate our theoretical findings through several illustrative simulations.