论文标题
里曼尼亚歧管的多面体近似
Polyhedral approximations of Riemannian manifolds
论文作者
论文摘要
我们对Riemannian歧管的曲率张量提供了条件,该曲线允许通过弯曲的曲率下方或更高的弯曲度指标来接受Lipschitz的近似。 我们表明,这种情况也足以存在局部近似值。我们猜想它也足以实现全球近似值,并在某些特殊情况下证明了这一点。
We give a condition on the curvature tensors of Riemannian manifolds that admit Lipschitz approximation by polyhedral metrics with curvature bounded below or above. We show that this condition is also sufficient for the existence of local approximations. We conjecture that it is also sufficient for the global approximations and prove it in some special cases.