论文标题

固定阵尾过程的Renyi熵率

Renyi Entropy Rate of Stationary Ergodic Processes

论文作者

Wu, Chengyu, Li, Yonglong, Xu, Li, Han, Guangyue

论文摘要

在本文中,我们研究了固定阵尾过程的Renyi熵率。对于一类特殊的固定恒定过程,我们证明了Renyi熵率始终存在,并且可以通过其定义序列在多个月上近似。此外,使用Markov近似方法,我们表明,由于马尔可夫阶命令达到无穷大。对于一般情况,通过构建反例,我们反驳了一个猜想,即一般固定恒定的ergodic过程的Renyi熵率始终会收敛于其香农熵率,而α为1。

In this paper, we examine the Renyi entropy rate of stationary ergodic processes. For a special class of stationary ergodic processes, we prove that the Renyi entropy rate always exists and can be polynomially approximated by its defining sequence; moreover, using the Markov approximation method, we show that the Renyi entropy rate can be exponentially approximated by that of the Markov approximating sequence, as the Markov order goes to infinity. For the general case, by constructing a counterexample, we disprove the conjecture that the Renyi entropy rate of a general stationary ergodic process always converges to its Shannon entropy rate as α goes to 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源