论文标题
通过中子重力实验测试标准模型扩展的标量扇区
Testing the scalar sector of the Standard-Model Extension with neutron gravity experiments
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In the present study we analyse, within the scalar sector of the Standard-Model Extension (SME) framework, the influence of a spontaneous Lorentz symmetry breaking on gravitational quantum states of ultracold neutrons. The model is framed according to the laboratory conditions of the recent high-sensitivity GRANIT and $q$Bounce experiments. The high-precision data achieved in such experiments allow us to set bounds on the symmetry breaking parameters of the model. The effective Hamiltonian governing the neutron's motion along the axis of free fall is derived explicitly. It describes a particle in a gravitational field with an effective gravitational constant controlled non-trivially by the Lorentz-violating parameters. In particular, using the exact wave functions and the energy spectrum, we evaluate both the heights associated with the quantum states and the transition frequencies between neighborhoring quantum states. By comparing our theoretical results with those reported in the GRANIT and the $q$Bounce experiments, upper bounds on the Lorentz-violating parameters are determined. We also consider for the first time the gravity-induced interference pattern in a COW-type experiment to test Lorenz-invariance. In this case, an upper bound for the parameters is established as well.