论文标题
无监督的学习,用于组合优化和原则客观放松
Unsupervised Learning for Combinatorial Optimization with Principled Objective Relaxation
论文作者
论文摘要
使用机器学习来求解组合优化(CO)问题是具有挑战性的,尤其是当数据未标记时。这项工作为CO问题提供了无监督的学习框架。我们的框架遵循一种标准的放松加能方法,并采用神经网络来参数放松的解决方案,以便简单的背部传播可以端到端训练模型。我们的关键贡献是,观察到,如果放松的目标满足入门凹度,那么低优化损失就可以保证最终积分解决方案的质量。该观察结果显着扩大了以ERDOS的概率方法启发的先前框架的适用性。特别是,该观察结果可以指导目标模型的设计,在这些应用程序中未明确给出目标,同时需要在先验中进行建模。我们通过解决合成图优化问题以及两个现实世界应用程序来评估我们的框架,包括电路设计和近似计算中的资源分配。我们的框架在很大程度上胜过基于天真的放松,增强学习和gumbel-softmax技巧的基准。
Using machine learning to solve combinatorial optimization (CO) problems is challenging, especially when the data is unlabeled. This work proposes an unsupervised learning framework for CO problems. Our framework follows a standard relaxation-plus-rounding approach and adopts neural networks to parameterize the relaxed solutions so that simple back-propagation can train the model end-to-end. Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the final integral solutions. This observation significantly broadens the applicability of the previous framework inspired by Erdos' probabilistic method. In particular, this observation can guide the design of objective models in applications where the objectives are not given explicitly while requiring being modeled in prior. We evaluate our framework by solving a synthetic graph optimization problem, and two real-world applications including resource allocation in circuit design and approximate computing. Our framework largely outperforms the baselines based on naïve relaxation, reinforcement learning, and Gumbel-softmax tricks.