论文标题

改进了不规则时间序列ode的批处理策略

Improved Batching Strategy For Irregular Time-Series ODE

论文作者

Lam, Ting Fung, Bresler, Yony, Khorshid, Ahmed, Perlmutter, Nathan

论文摘要

不规则的时间序列数据在现实世界中很普遍,并且具有简单的复发性神经网络(RNN)的建模具有挑战性。因此,提出了一种结合使用普通微分方程(ODE)和RNN使用的模型(ODE-RNN),以更高的精度对不规则时间序列进行建模,但其计算成本很高。在本文中,我们通过使用不同的有效批处理策略提出了ODE-RNN的运行时间的改进。我们的实验表明,新模型将ODE-RNN的运行时间显着从2次降低到49次,这取决于数据的不规则性,同时保持可比的精度。因此,我们的模型可以对建模较大的不规则数据集建模。

Irregular time series data are prevalent in the real world and are challenging to model with a simple recurrent neural network (RNN). Hence, a model that combines the use of ordinary differential equations (ODE) and RNN was proposed (ODE-RNN) to model irregular time series with higher accuracy, but it suffers from high computational costs. In this paper, we propose an improvement in the runtime on ODE-RNNs by using a different efficient batching strategy. Our experiments show that the new models reduce the runtime of ODE-RNN significantly ranging from 2 times up to 49 times depending on the irregularity of the data while maintaining comparable accuracy. Hence, our model can scale favorably for modeling larger irregular data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源