论文标题

对人群计数的后门攻击

Backdoor Attacks on Crowd Counting

论文作者

Sun, Yuhua, Zhang, Tailai, Ma, Xingjun, Zhou, Pan, Lou, Jian, Xu, Zichuan, Di, Xing, Cheng, Yu, Lichao

论文摘要

人群计数是一项回归任务,它估计场景图像中的人数,在一系列安全至关重要的应用程序中起着至关重要的作用,例如视频监视,交通监控和流量控制。在本文中,我们调查了基于深度学习的人群计数模型对后门攻击的脆弱性,这是对深度学习的主要安全威胁。后门攻击者通过数据中毒将后门触发植入目标模型中,以控制测试时间的预测。与已经开发和测试的大多数现有后门攻击的图像分类模型不同,人群计数模型是输出多维密度图的回归模型,因此需要不同的技术来操纵。 在本文中,我们提出了两次新颖的密度操纵后门攻击(DMBA $^{ - } $和DMBA $^{+} $),以攻击模型以产生任意的大或小密度估计。实验结果证明了我们对五种经典人群计数模型和四种类型的数据集的DMBA攻击的有效性。我们还深入分析了背景人群计数模型的独特挑战,并揭示了有效攻击的两个关键要素:1)完整而密集的触发器以及2)操纵地面真相计数或密度图。我们的工作可以帮助评估人群计数模型对潜在后门攻击的脆弱性。

Crowd counting is a regression task that estimates the number of people in a scene image, which plays a vital role in a range of safety-critical applications, such as video surveillance, traffic monitoring and flow control. In this paper, we investigate the vulnerability of deep learning based crowd counting models to backdoor attacks, a major security threat to deep learning. A backdoor attack implants a backdoor trigger into a target model via data poisoning so as to control the model's predictions at test time. Different from image classification models on which most of existing backdoor attacks have been developed and tested, crowd counting models are regression models that output multi-dimensional density maps, thus requiring different techniques to manipulate. In this paper, we propose two novel Density Manipulation Backdoor Attacks (DMBA$^{-}$ and DMBA$^{+}$) to attack the model to produce arbitrarily large or small density estimations. Experimental results demonstrate the effectiveness of our DMBA attacks on five classic crowd counting models and four types of datasets. We also provide an in-depth analysis of the unique challenges of backdooring crowd counting models and reveal two key elements of effective attacks: 1) full and dense triggers and 2) manipulation of the ground truth counts or density maps. Our work could help evaluate the vulnerability of crowd counting models to potential backdoor attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源