论文标题

Vertxnet:自动分割和识别脊柱X射线图像的腰椎和颈椎

VertXNet: Automatic Segmentation and Identification of Lumbar and Cervical Vertebrae from Spinal X-ray Images

论文作者

Chen, Yao, Mo, Yuanhan, Readie, Aimee, Ligozio, Gregory, Coroller, Thibaud, Papiez, Bartlomiej W.

论文摘要

脊柱X射线成像上椎骨的手动注释是昂贵的,并且由于骨骼形状的复杂性和图像质量变化而耗时。在这项研究中,我们通过提出一种称为Vertxnet的集合方法来解决这一挑战,以自动在X射线脊柱图像中分段和标记椎骨。 Vertxnet结合了两个最先进的分割模型,即U-NET和Mask R-CNN,以改善椎骨分割。 Vertxnet的一个主要特征也是由于其在给定的脊柱X射线图像上的掩模R-CNN组件(经过训练以检测“参考”椎骨)来推断椎骨标签。在内部宫颈内部和腰椎X射线成像的内部数据集上评估了Vertxnet,以用于强直性脊柱炎(AS)。我们的结果表明,Vertxnet可以准确标记脊柱X射线(平均骰子为0.9)。它可以用来规避缺乏注释的椎骨而无需进行人类专家审查的情况。此步骤对于通过解决分割的缺乏来研究临床关联至关重要,这是大多数计算成像项目的常见瓶颈。

Manual annotation of vertebrae on spinal X-ray imaging is costly and time-consuming due to bone shape complexity and image quality variations. In this study, we address this challenge by proposing an ensemble method called VertXNet, to automatically segment and label vertebrae in X-ray spinal images. VertXNet combines two state-of-the-art segmentation models, namely U-Net and Mask R-CNN to improve vertebrae segmentation. A main feature of VertXNet is to also infer vertebrae labels thanks to its Mask R-CNN component (trained to detect 'reference' vertebrae) on a given spinal X-ray image. VertXNet was evaluated on an in-house dataset of lateral cervical and lumbar X-ray imaging for ankylosing spondylitis (AS) patients. Our results show that VertXNet can accurately label spinal X-rays (mean Dice of 0.9). It can be used to circumvent the lack of annotated vertebrae without requiring human expert review. This step is crucial to investigate clinical associations by solving the lack of segmentation, a common bottleneck for most computational imaging projects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源