论文标题
长字符串和准绕线模式
Long Strings and Quasinormal Winding Modes
论文作者
论文摘要
我们使用Lie代数分解为伴随轨道,计算SL(2,r)覆盖组粒子的路径积分。因此,我们直观地得出了组上粒子的希尔伯特空间,包括离散和连续表示。接下来,我们执行分区函数的Lorentzian双曲线,并将其与Euclidean BTZ分区函数相关联。我们使用粒子模型为BTZ黑洞背景上的字符串的一个环真空振幅的光谱含量提供进一步的讨论。我们认为,循环积分代码中的杆子在缠绕黑洞的长字符串模式的贡献。此外,我们还确定了准绕组模式的鞍点贡献。
We compute the path integral for a particle on the covering group of SL(2,R) using a decomposition of the Lie algebra into adjoint orbits. We thus intuitively derive the Hilbert space of the particle on the group including discrete and continuous representations. Next, we perform a Lorentzian hyperbolic orbifold of the partition function and relate it to the Euclidean BTZ partition function. We use the particle model to inform further discussion of the spectral content of the one loop vacuum amplitude for strings on BTZ black hole backgrounds. We argue that the poles in the loop integrand code contributions of long string modes that wind the black hole. We moreover identify saddle point contributions of quasinormal winding modes.