论文标题

吸收$ \ textit {vers} $吸附:2D材料中杂质的高通量计算

Absorption $\textit{versus}$ Adsorption: High-Throughput Computation of Impurities in 2D Materials

论文作者

Davidsson, Joel, Bertoldo, Fabian, Thygesen, Kristian S., Armiento, Rickard

论文摘要

通过杂质原子对二维(2D)材料的掺杂发生\ textit {via}两种不同的机制:通过2D晶体吸收掺杂剂或在其表面吸附。为了区分相关的机制,我们系统地涂料53在吸收和吸附位点,通过65种不同的化学元素将实验合成的2D单层合成。使用新开发的ASE \ texttt {DefectBuilder}生成了17,598个掺杂的单层结构 - 一种Python工具,用于在2D和批量材料中设置点缺陷,然后由自动化的高关键密度功能理论(DFT)工作流放松。我们发现,对于具有较大晶格参数的宿主材料中部分填充的价电子的小掺杂剂,间质位置是优选的。相反,由于与间隙相比,吸附位点的配位较低,因此对具有较少价电子数量的掺杂剂有利于ADATOM。放松的结构,表征参数,缺陷形成能和磁矩(旋转)在开放数据库中可用,以帮助促进我们对2D材料中缺陷的理解。

Doping of a two-dimensional (2D) material by impurity atoms occurs \textit{via} two distinct mechanisms: absorption of the dopants by the 2D crystal or adsorption on its surface. To distinguish the relevant mechanism, we systematically dope 53 experimentally synthesized 2D monolayers by 65 different chemical elements in both absorption and adsorption sites. The resulting 17,598 doped monolayer structures were generated using the newly developed ASE \texttt{DefectBuilder} -- a Python tool to set up point defects in 2D and bulk materials -- and subsequently relaxed by an automated high-throughput density functional theory (DFT) workflow. We find that interstitial positions are preferred for small dopants with partially filled valence electrons in host materials with large lattice parameters. On the contrary, adatoms are favored for dopants with a low number of valence electrons due to lower coordination of adsorption sites compared to interstitials. The relaxed structures, characterization parameters, defect formation energies, and magnetic moments (spins) are available in an open database to help advance our understanding of defects in 2D materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源