论文标题
Angehrn-Siu-Helmke的方法适用于Abelian品种
Angehrn-Siu-Helmke's method applied to abelian varieties
论文作者
论文摘要
我们应用Angehrn-Siu-Helmke的方法来估计较高尺寸极化的Abelian品种的底线FREENESS阈值。我们表明,在模量空间中,CAUCCI的猜想持有非常通用的极化Abelian品种$ \ MATHCAL A_ {G,L} $,只有有限的许多可能的极化类型$ L $在每个尺寸$ G $中。我们改善了任何两极分化的$ 4 $ folds和简单的Abelian $ 5 $ folds的Basepoint FreeNESS阈值的界限。
We apply Angehrn-Siu-Helmke's method to estimate basepoint freeness thresholds of higher dimensional polarized abelian varieties. We showed that a conjecture of Caucci holds for very general polarized abelian varieties in the moduli spaces $\mathcal A_{g, l}$ with only finitely many possible exceptions of polarization types $l$ in each dimension $g$. We improved the bound of basepoint freeness thresholds of any polarized ableian $4$-folds and simple abelian $5$-folds.