论文标题
$ q $ -ary golay的互补阵列$ \ mathbf {2}^{(m)} $是标准
The $q$-ary Golay complementary arrays of size $\mathbf{2}^{(m)}$ are standard
论文作者
论文摘要
要查找长度为$ 2^{m} $的非标准二进制Golay互补序列(GCSS),或者从理论上证明它们的不存在仍然是开放的。由于已显示出所有标准的$ q $ -ary($ q $偶数)$ 2^m $的gcss可以通过标准$ q $ - q $ -ary golay golay互补阵列对(尺寸$ m $)和尺寸$ 2 \ times $ 2 \ times 2 \ times 2 \ times \ cdots \ cdots \ cdots \ times 2 $ 2 $(abbreviation $ $ \ ymathbffffffff iT)是否所有$ q $ - y-ary size $ \ mathbf {2}^{(m)} $都是标准的。我们对这个问题给出了积极的答案。
To find the non-standard binary Golay complementary sequences (GCSs) of length $2^{m}$ or theoretically prove the nonexistence of them are still open. Since it has been shown that all the standard $q$-ary (where $q$ is even) GCSs of length $2^m$ can be obtained by standard $q$-ary Golay complementary array pair (GAP) of dimension $m$ and size $2\times 2 \times \cdots \times 2$ (abbreviated to size $\mathbf{2}^{(m)}$), it's natural to ask whether all the $q$-ary GAP of size $\mathbf{2}^{(m)}$ are standard. We give a positive answer to this question.