论文标题
分娩预测时胎龄的多视图关注
Multi-view Attention for gestational age at birth prediction
论文作者
论文摘要
我们介绍了SLCN出生预测时的妊娠年龄(临床神经影像学表面学习)挑战的方法。我们的方法基于一种多视图形状分析技术,该技术从不同的角度捕获了3D对象的2D渲染。我们在球体表面上呈现大脑特征,然后通过2D CNN分析2D图像,并针对回归任务进行注意力层。回归任务在天然空间上达到1.637 +-1.3的MAE,模板空间上的MAE为1.38 +-1.14。该项目的源代码可在我们的github存储库中获得https://github.com/mathieuleclercq/slcn_challenge_unc_unc_unc
We present our method for gestational age at birth prediction for the SLCN (surface learning for clinical neuroimaging) challenge. Our method is based on a multi-view shape analysis technique that captures 2D renderings of a 3D object from different viewpoints. We render the brain features on the surface of the sphere and then the 2D images are analyzed via 2D CNNs and an attention layer for the regression task. The regression task achieves a MAE of 1.637 +- 1.3 on the Native space and MAE of 1.38 +- 1.14 on the template space. The source code for this project is available in our github repository https://github.com/MathieuLeclercq/SLCN_challenge_UNC