论文标题

局部不规则猜想与仙人掌

Local Irregularity Conjecture vs. cacti

论文作者

Sedlar, Jelena, Škrekovski, Riste

论文摘要

如果每个边缘的最终偏见的程度都不同,则图是局部不规则的。如果每种颜色诱导G的局部不规则亚图。可着色图G的局部不规则色索引X'irr(g)是G的局部不规则边缘着色所需的最小颜色。局部不规则性猜想声称,所有可着色图最多都需要3种颜色,以使本地不规则的边缘着色。最近,已经观察到,猜想对弓形图b不满意[7]。仙人掌是该猜想的重要图形类别,因为B和所有不可色的图都是仙人掌。在本文中,我们表明,对于每一个可着色的仙人掌图g!= b,它认为x'irr(g)<= 3。这使我们相信b是唯一具有X'irr(b)> 3的可色彩图,因此B是本地违规性猜想的唯一反例。

A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B [7]. Cacti are important class of graphs for this conjecture since B and all non-colorable graphs are cacti. In this paper we show that for every colorable cactus graph G != B it holds that X'irr(G) <= 3. This makes us to believe that B is the only colorable graph with X'irr(B) > 3, and consequently that B is the only counterexample to the Local Irregularity Conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源