论文标题

选择合适的同事:人类机器人协作组装中认知人体工程学的在线评估

Pick the Right Co-Worker: Online Assessment of Cognitive Ergonomics in Human-Robot Collaborative Assembly

论文作者

Lagomarsino, Marta, Lorenzini, Marta, Balatti, Pietro, De Momi, Elena, Ajoudani, Arash

论文摘要

人类机器人协作组装系统提高了工作场所的效率和生产力,但可能会增加工人的认知需求。本文提出了一个在线和定量的框架,以评估与同事的互动,即人类运营商或具有不同控制策略的工业协作机器人所引起的认知工作量。该方法可以监视操作员的注意力分布和上身运动学,从而受益于低成本立体声摄像机和尖端的人工智能算法的输入图像(即头部姿势估计和骨架跟踪)。三种实验场景具有工作站特征和互动方式的变化,旨在测试我们在线方法的性能,以防止最新的离线测量。结果证明,我们基于视觉的认知负荷评估有可能将其融入新一代的协作机器人技术。后者将使人类的认知状态监测和机器人控制策略适应,以改善人类舒适,人体工程学和对自动化的信任。

Human-robot collaborative assembly systems enhance the efficiency and productivity of the workplace but may increase the workers' cognitive demand. This paper proposes an online and quantitative framework to assess the cognitive workload induced by the interaction with a co-worker, either a human operator or an industrial collaborative robot with different control strategies. The approach monitors the operator's attention distribution and upper-body kinematics benefiting from the input images of a low-cost stereo camera and cutting-edge artificial intelligence algorithms (i.e. head pose estimation and skeleton tracking). Three experimental scenarios with variations in workstation features and interaction modalities were designed to test the performance of our online method against state-of-the-art offline measurements. Results proved that our vision-based cognitive load assessment has the potential to be integrated into the new generation of collaborative robotic technologies. The latter would enable human cognitive state monitoring and robot control strategy adaptation for improving human comfort, ergonomics, and trust in automation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源