论文标题

fabisearch:用于更改点检测和可视化的软件包,在r中多变量高维时间序列的网络结构

fabisearch: A Package for Change Point Detection in and Visualization of the Network Structure of Multivariate High-Dimensional Time Series in R

论文作者

Ondrus, Martin, Cribben, Ivor

论文摘要

变更点检测是时间序列分析中常用的技术,它捕获了许多实际过程功能的动态性质。随着多元高维时间序列数据的不断增加,尤其是在神经影像和金融方面,显然需要可扩展和数据驱动的变更点检测方法。当前,用于多元高维数据的更改点检测方法很少,在高级,易于访问的软件包中可用的可用性更少。为此,我们介绍了综合R档案网络(CRAN)上可用的R软件包Fabisearch,该网络(CRAN)实现了分解的二进制搜索(Fabisearch)方法。 Fabisearch是一种新的统计方法,用于检测多元高维时间序列网络结构中的变化点,该方法采用了非负矩阵分解(NMF),这是一种无监督的维度降低和聚类技术。考虑到NMF的高计算成本,我们在C ++代码中实现了该方法,并使用并行化来减少计算时间。此外,我们还利用一种新的二进制搜索算法来有效识别多个变更点,并为变更点之间的数据提供了新的方法估算网络估算。我们通过将其应用于神经成像和金融数据集来显示包装的功能和实用性。最后,我们在灵活的独立函数中提供了一种交互式,三维,大脑特异性的网络可视化能力。该功能可以与任何节点坐标图集一起方便使用,并且可以根据社区成员资格(如果适用)对节点进行编码。该输出是在皮质表面上放置的优雅显示的网络,可以在3维空间中旋转。

Change point detection is a commonly used technique in time series analysis, capturing the dynamic nature in which many real-world processes function. With the ever increasing troves of multivariate high-dimensional time series data, especially in neuroimaging and finance, there is a clear need for scalable and data-driven change point detection methods. Currently, change point detection methods for multivariate high-dimensional data are scarce, with even less available in high-level, easily accessible software packages. To this end, we introduce the R package fabisearch, available on the Comprehensive R Archive Network (CRAN), which implements the factorized binary search (FaBiSearch) methodology. FaBiSearch is a novel statistical method for detecting change points in the network structure of multivariate high-dimensional time series which employs non-negative matrix factorization (NMF), an unsupervised dimension reduction and clustering technique. Given the high computational cost of NMF, we implement the method in C++ code and use parallelization to reduce computation time. Further, we also utilize a new binary search algorithm to efficiently identify multiple change points and provide a new method for network estimation for data between change points. We show the functionality of the package and the practicality of the method by applying it to a neuroimaging and a finance data set. Lastly, we provide an interactive, 3-dimensional, brain-specific network visualization capability in a flexible, stand-alone function. This function can be conveniently used with any node coordinate atlas, and nodes can be color coded according to community membership (if applicable). The output is an elegantly displayed network laid over a cortical surface, which can be rotated in the 3-dimensional space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源