论文标题

降低惠特克系数的不断变化的还原组

Non-vanishing of geometric Whittaker coefficients for reductive groups

论文作者

Faergeman, Joakim, Raskin, Sam

论文摘要

我们证明,尖锐的自动型D模块具有非散热器系数,从GL_N到一般还原组的几何Langlands计划中概括了已知结果。关键工具是对Whittaker系数的微局部解释。我们在几何兰兰兹环境中建立了各种精确性,可能具有独立感兴趣。具体而言,我们表明Hecke函子在钢化D模块的类别上是T型的,从而增强了GL_N步态的经典结果(具有不同的假设)。我们还表明,Whittaker系数函数是具有nilpotent奇异支撑的滑轮的T型外观。我们结果的另一个结果是,受纠正的,受限制的几何兰兰斯的猜想必须是t-精神。我们应用结果表明,对于适当不可还原的局部系统,惠特克·纳尔赛(Whittaker-Norz)的hecke eigensheaves是bun_g的每个连接组件上不可还原的不可修复的绳索。

We prove that cuspidal automorphic D-modules have non-vanishing Whittaker coefficients, generalizing known results in the geometric Langlands program from GL_n to general reductive groups. The key tool is a microlocal interpretation of Whittaker coefficients. We establish various exactness properties in the geometric Langlands context that may be of independent interest. Specifically, we show Hecke functors are t-exact on the category of tempered D-modules, strengthening a classical result of Gaitsgory (with different hypotheses) for GL_n. We also show that Whittaker coefficient functors are t-exact for sheaves with nilpotent singular support. An additional consequence of our results is that the tempered, restricted geometric Langlands conjecture must be t-exact. We apply our results to show that for suitably irreducible local systems, Whittaker-normailzed Hecke eigensheaves are perverse sheaves that are irreducible on each connected component of Bun_G.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源