论文标题
专家,人群和算法的皮肤色调注释的皮肤病学图像数据集的透明度
Towards Transparency in Dermatology Image Datasets with Skin Tone Annotations by Experts, Crowds, and an Algorithm
论文作者
论文摘要
尽管人工智能(AI)有望支持医疗保健提供者并提高医疗诊断的准确性,但数据集组成的缺乏透明度会使AI模型暴露于无意识和可避免的错误的可能性。特别是,皮肤病学条件的公共图像数据集很少包含有关肤色的信息。作为提高透明度的开始,AI研究人员已经将Fitzpatrick皮肤类型(FST)的使用从患者光敏性的度量到估算计算机视觉应用算法审核中的肤色的度量,包括面部识别和皮肤病学诊断。为了了解图像上估计的FST注释的可变性,我们比较了来自教科书和在线皮肤病学图谱的460张皮肤条件图像的多种FST注释方法。我们发现,三位经过董事会认证的皮肤科医生之间的评估者间可靠性与经过董事会认证的皮肤科医生和两种众包方法之间的评估者间可靠性相媲美。相比之下,我们发现转换为FST(ITA-FST)方法的单个类型学角度会产生的注释与专家的注释相比,与专家的注释相比,相互关联的注释明显较小。这些结果表明,基于ITA-FST的算法对于注释大规模图像数据集并不可靠,但是以人为本的,基于人群的协议可以可靠地将皮肤类型透明度添加到皮肤病学数据集中。此外,我们介绍了具有可调参数的动态共识协议的概念,包括专家审查,以提高人群的可见性,并为未来的众包大型图像数据集的注释提供指导。
While artificial intelligence (AI) holds promise for supporting healthcare providers and improving the accuracy of medical diagnoses, a lack of transparency in the composition of datasets exposes AI models to the possibility of unintentional and avoidable mistakes. In particular, public and private image datasets of dermatological conditions rarely include information on skin color. As a start towards increasing transparency, AI researchers have appropriated the use of the Fitzpatrick skin type (FST) from a measure of patient photosensitivity to a measure for estimating skin tone in algorithmic audits of computer vision applications including facial recognition and dermatology diagnosis. In order to understand the variability of estimated FST annotations on images, we compare several FST annotation methods on a diverse set of 460 images of skin conditions from both textbooks and online dermatology atlases. We find the inter-rater reliability between three board-certified dermatologists is comparable to the inter-rater reliability between the board-certified dermatologists and two crowdsourcing methods. In contrast, we find that the Individual Typology Angle converted to FST (ITA-FST) method produces annotations that are significantly less correlated with the experts' annotations than the experts' annotations are correlated with each other. These results demonstrate that algorithms based on ITA-FST are not reliable for annotating large-scale image datasets, but human-centered, crowd-based protocols can reliably add skin type transparency to dermatology datasets. Furthermore, we introduce the concept of dynamic consensus protocols with tunable parameters including expert review that increase the visibility of crowdwork and provide guidance for future crowdsourced annotations of large image datasets.