论文标题

通过LSTM优化框架学习最佳解决方案

Learning Optimal Solutions via an LSTM-Optimization Framework

论文作者

Yilmaz, Dogacan, Büyüktahtakın, İ. Esra

论文摘要

在这项研究中,我们提出了一个深入的学习优化框架,以解决动态的混合企业计划。具体而言,我们开发了双向长期内存(LSTM)框架,可以及时向前和向后处理信息,以学习最佳解决方案,以解决顺序决策问题。我们展示了我们在预测单项电容批号问题(CLSP)的最佳决策方面的方法,其中二进制变量表示是否在一个时期内产生。由于问题的动态性质,可以将CLSP视为序列标记任务,在该任务中,复发性神经网络可以捕获问题的时间动力学。计算结果表明,我们的LSTM优化(LSTM-OPT)框架大大减少了基准CLSP问题的解决方案时间,而可行性和最佳性却没有太大损失。例如,在240,000多个测试实例中,在85 \%级别的预测平均将CPLEX解的时间降低了9倍,最佳差距小于0.05 \%\%和0.4 \%\%\%\%的不可行性。此外,使用较短的计划范围训练的模型可以成功预测具有更长计划范围的实例的最佳解决方案。对于最困难的数据集,LSTM在25 \%级别的LSTM预测将70 CPU小时的溶液时间降低至小于2 CPU分钟,最佳差距为0.8 \%,而没有任何不可行。从解决方案质量和确切的方法方面,LSTM-OPT框架(例如($ \ ell $,s)和基于动态编程的不等式)在解决方案时间改进方面优于经典ML算法,例如逻辑回归和随机森林。我们的机器学习方法可能有益于解决类似于CLSP的顺序决策问题,CLSP需要重复,经常和快速地解决。

In this study, we present a deep learning-optimization framework to tackle dynamic mixed-integer programs. Specifically, we develop a bidirectional Long Short Term Memory (LSTM) framework that can process information forward and backward in time to learn optimal solutions to sequential decision-making problems. We demonstrate our approach in predicting the optimal decisions for the single-item capacitated lot-sizing problem (CLSP), where a binary variable denotes whether to produce in a period or not. Due to the dynamic nature of the problem, the CLSP can be treated as a sequence labeling task where a recurrent neural network can capture the problem's temporal dynamics. Computational results show that our LSTM-Optimization (LSTM-Opt) framework significantly reduces the solution time of benchmark CLSP problems without much loss in feasibility and optimality. For example, the predictions at the 85\% level reduce the CPLEX solution time by a factor of 9 on average for over 240,000 test instances with an optimality gap of less than 0.05\% and 0.4\% infeasibility in the test set. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the LSTM predictions at the 25\% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8\% and without any infeasibility. The LSTM-Opt framework outperforms classical ML algorithms, such as the logistic regression and random forest, in terms of the solution quality, and exact approaches, such as the ($\ell$, S) and dynamic programming-based inequalities, with respect to the solution time improvement. Our machine learning approach could be beneficial in tackling sequential decision-making problems similar to CLSP, which need to be solved repetitively, frequently, and in a fast manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源